
J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 485–500, 2007.
© Springer-Verlag Berlin Heidelberg 2007

ReeF: Defining a Customizable Reengineering
Framework

Gemma Grau and Xavier Franch

Universitat Politècnica de Catalunya (UPC)
c/ Jordi Girona 1-3, Barcelona E-08034, Spain

{ggrau, franch}@lsi.upc.edu

Abstract. During their life span, organizations must adapt continuously to an
always evolving context and so have to do their Information Systems and the
processes around them. The scope of these changes ranges from small-scale
maintenance modifications or the redefinition of some business processes to the
full deployment of a new system. In all cases, the resulting Information System
will seldom be built from the scratch; as even when deploying it for the first
time, we may consider that it starts from the description of the current human
processes. For that reason, we may consider Information System development
and its evolution as a reengineering process. In this paper, we present a
framework that defines the generic activity of reengineering using Method
Engineering techniques. The framework is built upon existing reengineering
methods from different disciplines and provides six generic phases that can be
instantiated with the purpose of defining new reengineering methods.

Keywords: Method Engineering, Reengineering Framework, Business Process
Reengineering, Software Process Reengineering, i* Modelling and Analysis.

1 Introduction

Information Systems (IS) are in continuous change for various reasons. Changes that
affect the system over time include requirements, technology and business processes
[30]. All these changes are diverse in nature and may require different treatments
according to their impact over the IS. On the one hand, the current software may have to
be rebuilt, in order to create a product with added functionality, better performance and
reliability, and improved maintainability [26]. On the other hand, if the changes on the
business are too profound, a new IS may have to be deployed by adapting an already
existing legacy system or by building a new one. Therefore, in all these situations, there
are processes, artefacts and knowledge that can be taken as a starting point.

According to [31], traditional reengineering activities include: identifying,
delineating, and modelling the existent process; analysing it for deficiencies;
proposing new solutions; and implementing the new design in terms of new technical
systems and new organizational structures. It is possible to observe that most of the
methods proposed for the specification, development or acquisition of IS already
support some of these activities. For instance, some IS methods explicitly mention the
term reengineering in their proposal, as in [1], [2], [3], [4], [20], [21], [26], [30], [32].

486 G. Grau and X. Franch

On the other hand, some other methods not defined in the reengineering context,
tackle with some of those activities, among them we mention [7], [8], [10], [11], [16],
[17], [19], [24], [28]. Therefore, we may consider that changes on ISs are all part of a
reengineering activity, which supports our claim of IS development being treatable
similarly to IS reengineering.

An observation that can be made is that each above-mentioned reengineering-
related approach focuses on a particular discipline: business processes [2], [20];
software architectures [3], [26]; or software platforms [4], [32]. Despite of this
diversity, there are a lot of similarities when the methods are deeply analysed.
Actually, some of the differences lie more in the detail (e.g., using this or that
technique) than in the rationale or the rough reengineering process. However, in some
proposals, some of the reengineering activities and artefacts are not mentioned and the
lack of a generic framework makes difficult to apply them through a complete
reengineering process.

In order to address this problem, we propose ReeF, a customizable Reengineering
Framework which is based on the principles of Method Engineering [5], [23], [25],
[28] with the aim of assisting on the construction of new processes based on the
existing ones. ReeF has been built in two steps: first, abstracting the phases and
method artefacts from the existing method PRiM, a Process Reengineering i* Method
[13], by using the Approach for Method Reengineering [28]; and second, generalizing
the obtained phases and method artefacts by analysing other existing reengineering
techniques from different domains [1], [2], [3], [4], [7], [20], [21], [26], [30], [32].
Once obtained and validated, we show an example of framework customisation by
defining SARiM, a method for software architectures reengineering based on i*.

The benefits resulting from this process are twofold. In the one hand, the definition
of ReeF may help to understand, reconcile, and analyse existing reengineering
methods, and also to formulate new specific ones. With this aim, ReeF clearly
establishes the reengineering phases and the method artefacts involved in each phase
(techniques needed, modelling languages used, tool support provided, and roles). On
the other hand, the abstraction and generalization mechanisms used for abstracting
and generalizing ReeF from other methods (such as PRiM), may be applied to
generate other customizable frameworks based on a different development point of
view (as we have done with process reengineering).

The rest of the paper is organized as follows. In section 2 we outline the research
method followed to define the framework. The PRiM method, upon which ReeF is
based, is presented in section 3. The proposed framework is detailed in section 4 and
customized in section 5 for obtaining SARiM. Finally section 6 presents the
conclusions and future work.

2 Research Method

The main purpose of this research is to define a generic framework in which existing
reengineering techniques can be reconciled, adapted and analysed. As a result, new
reengineering methods in different disciplines and domains can be created by
derivation and combination of reusable fragments. As a result, this work is related
with Method Engineering, which is the discipline that constructs new methods from

 ReeF: Defining a Customizable Reengineering Framework 487

parts of existing methods [5]. There are several proposals that address Method
Engineering [5], [23], [25], [28], among which we remark:

 The OPEN Process Framework (OPF) [25] is a generic framework that provides a
repository with a wide range of Method Components, which are different parts of
existing methods described at different levels of detail that can be used for defining
other methods in different domains. A Method Component can be specialized into
Endeavour, Language, Producer, Stage, Work Product or Work Unit, which, in
turn, can all be specialized forming a complete hierarchy of elements. The OPF
repository of Method Components is very complete, thus enabling the selection of
those components more suitable for the specific purposes of the method.

 The Approach for Method Reengineering [28] proposes a bottom-up process for
transforming already existing methods into several pieces of method chunks which
are stored in a method base. From the stored method chunks, assembly-based
construction of methods is done by applying the following three steps [23]: method
requirements specification, method chunks selection and method chunks assembly.

We have considered using the OPF approach for generating ReeF; more precisely
we have studied the customizations for a Business Reengineering Project and for a
Framework Project. However, in both cases, the level of detail provided in OPF is too
broad for our purposes. For instance, the OPF reengineering phase description
includes aspects such as management, quality, and testing; but does not include all the
basic activities that we have identified in reengineering methods. Because of that, we
decided to use another approach for defining our reengineering framework, but we
still using OPF for assessing the analysis of existing reengineering methods, as a kind
of classification schema. On the other hand, method chunks are specific of the method
reengineered and, so, its granularity level is too detailed for being part of the generic
framework. However, we can observer that it is possible to abstract and generalize the
concepts of the specific method chunks into a set of generic method chunks. There are
several approaches on how to document, store and reuse the different method parts
[4], [5], [23], [25], [27], [28] that could be used to define and customize ReeF.
However, as we use method chunks during the definition of the method, we keep on
using them for illustrating its customization, as it is done in [23], [27], [28].
Consequently, we assume that method chunks are stored in a method base.

Taking those aspects into account, we have adopted a research method that, given
an existing reengineering method, abstracts and generalizes its method chunks. As a
result we have ReeF, a generic reengineering framework, which can be further
customized by using other method chunks previously stored in the method base.

In order to abstract the initial set of method chunks using method Reengineering,
we analyse PRiM, a Process Reengineering i* Method [13]. We consider this method
adequate as starting point because, as detailed in Section 3: 1) it is constructed after a
rigorous state of the art of business process reengineering techniques; 2) it makes use
of widespread techniques and artefacts in its definition instead of proposing ad-hoc
ones; 3) some of the underlying ideas are applicable to contexts other than business
process reengineering; 4) as authors, we have experience in applying the method and,
so, access to all the components that we want to abstract onto the customizable
framework which is an information sometimes difficult to obtain whilst analysing
other methods.

488 G. Grau and X. Franch

The definition of ReeF is done in two steps: abstraction and generalization.
Abstraction is the process of extracting common features from specific examples,
whereas generalization is the process of formulating general concepts by abstracting
common properties of instances. During the abstraction process, the phases of PRiM
are analysed in order to synthesize its method chunks, following the principles given
in [28]. PRiM is a method specific for the process reengineering domain. Thus, for
obtaining a generic framework, we need to apply a generalization process over other
reengineering methods from different domains. As a result, a new set of method
chunks is obtained, with the particularity that the method artefacts (namely, the
techniques, modelling languages, tool support and roles involved) are specified by
stating its generic definitions instead of their particular ones. Also, special emphasis is
given on the generic intention (the goal) that each method chunk pursues. The generic
framework is then defined by analysing and reconciling all the obtained elements.

The customization of ReeF is done by applying the following steps: refinement,
operationalization and combination. During refinement, the generic definitions stated
in the method chunks of ReeF, are refined into specific ones for the domain of
application. During the operationalization step, the refined statements of ReeF are
used for selecting from the method base those method chunks that better accomplish a
certain purpose. In order to facilitate this step, the method chunks can be classified
according to a set of criteria [23], [27]. Finally, during combination, the selected
method chunks are combined in order to obtain the new method. As we have
mentioned, these steps can also be done by using other methods [5], [25].

Fig.1 presents an overview of the research method. We observe that the validation
of ReeF is twofold. On the one hand, the proposed research method used for the
definition of ReeF ensures that the different reengineering methods analysed can be
successfully defined as instances of the framework. On the other hand, we define a
new method for the domain of software architectures with the objective of validating
its customization. The new method, called SARiM, is then defined by customizing

Fig. 1. Overview of the Research Method used for defining ReeF

 ReeF: Defining a Customizable Reengineering Framework 489

ReeF, and combines method chunks from existing reengineering methods with
specific techniques from the software architectures domain.

3 PRiM: A Process Reengineering i* Method

In our previous research we defined PRiM [13], a Process Reengineering i* Method
that addresses the specification of Information Systems from the process
reengineering perspective. The i* framework [31] is a well consolidated goal-oriented
approach that allows to model Information Systems in a graphical way, in terms of
actors and dependencies among them. The use of the i* framework in this context
provides an appropriate milieu where the current process rationale is modelled by
means of intentional concepts and the evaluation of the alternatives is done by
analyzing the rationale behind the modelled intentional concepts.

Analysis and evaluation of i* models is commonly done in a qualitative manner by
using the analysis capabilities provided by the Strategic Rational Model. Instead, a
goal of PRiM is to address the evaluation of alternatives from a quantitative point of
view by applying structural metrics over the i* models as proposed in [10], [11].
According to [9], one of the problems of the i* framework is the repeatability when
constructing the models. As repeatability is a fundamental property when applying
structural metrics and it is not ensured by other i* modelling techniques [14], the main
motivation behind PRiM definition has been to ensure this property. Because of that,
during the definition of PRiM we analysed several well-known business process
reengineering and requirements engineering methods [12] in order to incorporate in
the new method the adequate techniques, roles and artefacts. We highlight these
included elements in the description of the method provided below, and summarize
them in Table 1. We also remark that PRiM is defined upon the business process
reengineering phases presented in [31] but adding a first preliminary phase for
obtaining the information of the current processes.

The first phase of PRiM involves capturing and recording the information about
the current process in order to inform further phases. The approach adopted is based
on the RESCUE method [19] and, as a result, requirements engineers produce Human
Activity Models (hereafter, HAM). During the second phase, the i* model is build. In
order to ensure repeatability when constructing the models, PRiM provides concrete
guidelines that transform the information in Detailed Interaction Scripts (hereafter,
DIS) to i* elements. Thus, one of the activities the first phase is to adapt the
information on the HAM to DIS. As both approaches share a common structure,
simple transformation rules are provided in order to do it, and consistency checks are
defined latter on the method for checking that they have been correctly applied.

In the second phase, the i* model is built in two differentiated steps in order to
distinguish the functionality performed by the stakeholders from their strategic
intentionality. This approach is based on the semantically distinction of descriptive
goals and prescriptive goals given in [2]. Therefore descriptive goals are modelled on
the operational i* model by using the information in the DIS, and prescriptive goals
are modelled on the intentional i* model. As a result of this process a complete i*
model of the current process is obtained.

490 G. Grau and X. Franch

The first activity of the third phase is to obtain the goals of the new process, which
is done by using the complete i* model of the current process and applying KAOS [8]
for analysing it. As KAOS and i* are both goal-oriented, the acquired goals are added
to the complete i* model, yielding to the enriched i* model. With the aim of satisfying
these goals, several process alternatives are systematically generated by adding new
i* actors (which are mainly human, software or hardware), removing some of the
existing ones and reallocating the responsibilities between them. This process is
guided by the aim to satisfy the different new goals on the enriched i* model, which is
done by applying the techniques proposed in [20]. As a result, several alternative i*
models are produced.

In the fourth phase, the different alternative i* models are evaluated by applying
structural metrics over them [10], [11]. Trade-off analysis is needed in order to select
the most suitable solution. Finally, in the fifth phase, PRiM proposes the generation of
the new Information System specification from the i* model of the chosen alternative
which follows the work proposed by [29].

Table 1. Phases of PRiM, detailing the techniques, activities, inputs and outputs involved

Phase Activity Input Techniques Roles Output
Phase 1: Analysis of the current process

Analysis of the
current process

Current process Observation Process analyst
Human Activity
Diagrams (HAM)

Phase 2: Construction of the i* model of the current process
Transformation HAM Transformation rules i* modeller DIS
Actor Identification
and modelling

DIS Analysis of HAM i* modeller i* model actors

Building the
Operational i* model

DIS
Transformation
Rules

i* modeller
Operational i*
model

Building the
Intentional i* model

Operational i*
model

Provided Guidelines Process analyst
Intentional i*
model

Checking the
Complete i* model

Intentional i*
model

Consistency checks i* modeller
Complete i*
model

Phase 3: Generation of alternatives for the new process
Reengineering the
current process

Complete i* model
Requirements
Elicitation Patterns

Requirements
engineer

Enriched i* model

Adding new actors
to the process

Enriched i* model
Analysis of the
market

Process
designer

Actors for an i*
alternative (one)

Reallocating
responsibilities

Enriched i* model,
Actors

Provided Guidelines
Process
designer

Alternative i*
model (one)

Checking the
consistency

Alternative i*
models (all)

Consistency Checks i* modeller
Consistent i*
alternatives

Phase 4: Evaluation of alternatives for the new process
Choosing suitable
properties

Extended i* model
Observation of needs
from model

Process analyst Properties

Defining property
metrics

Properties Definition guidelines Process analyst Property metrics

Evaluating
alternative models

Consistent i* alt.
Metrics

Evaluation principles i* modeller
Evaluation
Results

Evaluation Trade-
off analysis

Evaluation results Trade-off analysis Process analyst
Suitable i* model
solution

Phase 5: Specification of the new Information System

Specification of the
new IS.

Suitable i* model
solution

Transformation
guidelines

i* and Use Case
modellers

Use Case model
of new IS.

 ReeF: Defining a Customizable Reengineering Framework 491

The PRiM method is based on an exhaustive state-of-the-art on business process
reengineering methods [12] complemented with well established requirements
engineering techniques such as KAOS [8]. The use of these techniques provides an
additional strength to all the phases defined on the method, and they have facilitated
the development of J-PRiM [15], a tool that supports the application of the method.
These are arguments that support using PRiM as starting point for formulating the
framework.

Also we would like to remark the benefits of the use of i* in PRiM. On the one
hand, i* supports all the phases of the method, allowing an assembly of methods by
association [23], because no connection between the product models has to be done
when combining the different method chunks. Actually, this also facilitates the
substitution of most of the techniques applied on the phases for other i* techniques
with the same aims, without great modifications and without altering the result (e.g.,
the generation of alternatives can be done by using the organizational patterns
proposed in [22]). On the other hand, as i* is goal-oriented and agent-oriented, it
allows reasoning at the goal and agent levels, which aligns with the strategic nature of
reengineering processes. Consequently, in the assembly of methods by integration
[23], goal-oriented and agent-oriented method chunks are easily adapted to represent
the concepts in a unique i* model (e.g., in phase 3, KAOS goals are represented in the
i* model).

4 Defining ReeF, a Customizable Reengineering Framework

In this section we explain the construction of ReeF in two differentiated processes,
abstraction and generalization, starting from the PRiM method.

4.1 The Abstraction Process

In the Abstraction process we extract common reengineering features from the
specific method PRiM. Thus, we use the Approach for Method Reengineering
proposed in [28] over PRiM for achieving the proposed four main intentions: Define a
section, Define a guideline, Identify a method chunk, and Define a method chunk. Due
to the lack of space, we present directly the application of the method in our context; a
complete description of the foundations can be found in [27], [28].

The PRiM method has a well defined process model and, so, in order to identify its
sections we use the functional strategy in order to establish the method map sections
from its phases. The intentions (or goals) of each phase of PRiM are identified and
documented using the Method Reengineering suggested notation, as follows: Analyse
the current process using Human Activity Modelling; Conceptualize the current
process into an i* model, Elicit requirements for the new process and explore
different process alternatives based on them; Assess the generated process alternatives
using evaluation techniques; and Create the specification of the new Information
System.

When reviewing the guidelines associated to these intentions, we realize that the
section “Elicit requirements for the new process and explore different process
alternatives based on them” contains two different products that could be treated

492 G. Grau and X. Franch

independently. Thus, we apply the progression discovery strategy and, as a result, the
section is divided into two different ones: “Elicit requirements for the new process
using a goal-oriented approach” and “Explore new process alternatives using process
generation heuristics”. Once the sections are defined, the guidelines indicating how to
proceed to achieve the objective of each identified section are also defined by
applying Method Reengineering. For instance, the method chunk “Explore new
process alternatives using process generation heuristics” has the strategic guideline
that it is shown at the bottom of Fig. 2.

The method chunks are identified by using a section-based discovery strategy. We
consider that each of the identified sections represents a method chunk because they
can be reused separately outside its original method. Actually, as PRiM does so, we
do not consider to apply any other strategy to identify more method chunks. Therefore
we may define them already. At the top of Fig. 2 we present the descriptor for the
method chunk “Explore new process alternatives using process generation heuristics”.

Situation:

Intention:
Origin:
Objective:

Type:
Aggregates:

Application Domain: Information systems, Business process reengineering
Design Activity: Discover system requirements
Explore new process alternatives using process generation heuristics
PRiM method
To help the process designer to explore different process candidate actors and generate
the process alternatives that takes into account these actors.
Atomic
<(Problem description), Explore a process alternative solution modelled in i*>

<(Problem description),
Explore a process alternative solution with reallocating responsibilities between actors strategy>

<(Problem description),
Identify an Actor>*

<(Problem description), Explore
reallocation of responsibilities>

Begin

End

Identify an actor
Explore

reallocation of
responsibilities

Check
consistency

between
alternatives

c2 c5

c3 c4
c1

c1: NOT all actors have been
identified
c2: all actors have been
identified
c3: an alternative has been
generated
c4: NOT all the responsi-
bilities have been reallocated
c5: all the alternatives have
been generated.

Fig. 2. Method chunk “Explore new process alternatives using generation heuristics”

Once all the PRiM method chunks are identified, we abstract their intentions and
the method artefacts used and, as a result, we obtain a set of abstract method chunks.
Table 2 shows the results of these abstractions, where we can observe that the
intentions of the PRiM method chunks are written in an abstract manner in order to
help further customization of the method. This is done by substituting the PRiM
specific artefacts (techniques, modelling languages, tool support and roles) for its
equivalent generic artefacts, which are written between the symbols <>. The flow of
the artefacts involved in the abstracted method chunks shows that they are treated in a
specific order, hence establishing that they are sequential. In the fourth abstracted
method chunk of Table 2, we show how the abstracted method artefacts are
documented by stating a description and some of the examples of the analysis
techniques, modelling languages, tool support and roles involved. The rest of the
method artefacts abstraction is straightforward. A more formal documentation of the

 ReeF: Defining a Customizable Reengineering Framework 493

framework could be stated by using [6]. A complete catalogue of method artefacts can
be found at the OPF repository [25].

Table 2. Generic notation for the intentions of the abstracted method chunks (abridged as amc)

amc 1: Analyse [source] <domain artefact> using <analysis techniques> obtaining <analysed artefact>
amc 2: Conceptualize <analysed artefact> into <model artefact>
amc 3: Elicit <requirements artefact> for the [final] <domain artefact> using <elicitation techniques>
amc 4: Explore [candidate] <domain artefact> using <generation techniques> obtaining [generated]

<domain artefact>
Techniques: Techniques and heuristics used to explore candidate solution artefacts (e.g.,
application of organizational patterns, application of architectural patterns, heuristics and
guidelines for the generation of alternatives).
Modelling language: Formalisms used to conceptualize the candidate solution artefacts (e.g.,
business process reengineering models, conceptual models, scenarios, architecture description
languages, goal hierarchies, actor-dependency models such as i*)
Tool Support: Tools that aims at supporting the exploration of candidate solutions using an
specific formalism (e.g., scenario generation tools, generation of alternative architectures tools)

Roles Involved: Analyst, which is domain expert, responsible of exploring the solution artefacts
(e.g., process analyst, software architectures analyst, systems analyst).

amc 5: Assess [generated] <domain artefact> using <evaluation techniques>
amc 6: Create [final]<specification artefact> for the [new] <domain artefact> using <model

transformation techniques>

4.2 The Generalization Process

During the generalization process we formulate general concepts by analysing the
common properties of other reengineering methods. Once the initial set of method
chunks are identified, we apply again the Approach for Method Reengineering [28] to
analyse more reengineering methods in order to obtain a generalization of the process.
The undertaken review includes the methods used in the definition of PRiM (now
studied from a Method Reengineering perspective) [2], [20]; business process
reengineering methods [1], [24]; architecture reengineering methods [3], [21]; and
platform reengineering methods [4], [32]. As a result, we obtain the method chunks of
these processes. In Table 3 we present an excerpt of it by showing the intentions
obtained from analysing the Scenario-based Software Architecture Reengineering
method [3]. We observe that each intention corresponds to an abstracted method
chunk with only one exception: after the elicitation of the functional requirements, the
method assesses the current software architecture.

Table 3. Intentions proposed by the Scenario-based Software Architecture Reengineering [3]

Method Scenario-based Software Architecture Reengineering [3]
amc 1:
amc 2:

These method chunks are not defined, as the method establishes as its input: the source <software
architecture> conceptualized into <scenarios>

amc 3: Elicit <functional requirements> for the final <software architecture>
amc 5: Assess <current software architecture> using <scenario-based evaluation>
amc 4: Explore candidate <software architecture> using <QA-optimizing architecture transformations>
amc 5: Assess generated <software architecture> using <scenario-based evaluation>
amc 6: This method chunk is not defined. The output of the method is: <improved architecture design>

494 G. Grau and X. Franch

When analysing the method chunks obtained from applying Method Reengineering
over all the previously mentioned reengineering methods, we observe the following:

 The analysed methods chunks present intentions that can be considered equivalent
to the abstracted method chunks. For instance, all the methods share the intention
of “Explore new solution artefacts”, although they propose different guidelines to
satisfy it.

 Not all the analysed methods present a sequential instantiation of the abstracted
method chunks, as most of them omit some intentions. We remark that usually the
omitted phases are the ones at the beginning or at the end of the process. For
instance, in [3], [7], [21], the first two intentions are not mentioned as they assume
that the information of the current situation is already studied and modelled for
their purposes, but they all generate and evaluate candidate software architectures.

 Some of the studied methods propose a preliminary evaluation of the modelled
process before the elicitation of new requirements. For instance, [3], [24], [32].

 Some of the methods allow iteration between the phases, allowing eliciting new
requirements, exploring new solutions and evaluating them several times before
choosing the final solution [3], [4], [7], [24].

 All the analysed methods have the abstracted method chunks for exploring and
assessing the solution artefacts. However, in some of the methods the assessment
is implicit in the exploration of the solutions as if it were a cycle between both
phases. For instance, in [4] and [21] the designer generates the solutions according
to its own criteria, which means an implicit evaluation of the current solution.

 All the studied methods have their intentions executed in the sequential order
established by the abstracted method chunks. An extreme example of this is the
work proposed in [24] where different reengineering processes can be generated
from applying a set of map strategies, and the generated methods are compliant
with ReeF.

 The method artefacts obtained in the studied method chunks are equivalent to
those abstracted in ReeF and, although the proposed techniques come from
different domains, their intentions and roles are an instance of the ones abstracted.

 All the methods use a modelling language for communicating between its phases.
The common modelling languages are visual models (e.g., Use Case Maps [7],
enterprise business process models [24]) and structured text (e.g., scenarios [3]).

Taking those considerations into account, we generalize the abstracted method chunks
obtained in ReeF and we establish the following restrictions:

 There is a sequential order within the different abstracted method chunks, but it is
possible to omit the ones at the beginning or at the end, as some methods do.

 It is possible to assess the source artefact after it is modelled, in order to inform
the elicitation of requirements.

 It is possible to iterate between the phases: the evaluation of alternatives can
inform a new elicitation of requirements; new alternatives are generated and
evaluated; and so on and so forth, until a final solution is found.

As a result, the ReeF framework is composed by six phases, which are shown in
Fig. 3. The blue arrows show the sequence of execution of the phases according to the
abstracted method chunks allowing the diversions and iterations previously
mentioned. The framework defines, for each of these phases, the work products

 ReeF: Defining a Customizable Reengineering Framework 495

needed (inputs) and produced (outputs) during the phases, the techniques (including
the activities for obtaining the work products, the transformations between models
and the tool support used) and the roles that are involved. As the framework is
generic, customization has to be applied in order to instantiated it. We remark that
during customization it is possible to define the new method by using different
techniques for each of its iterations if needed.

Fig. 3. Phases, inputs, outputs, techniques and roles abstracted in ReeF

5 Customizing ReeF into SARiM

As an example of application of the framework we propose the definition of SARiM,
a Software Architecture Reengineering i* Method. The aim of SARiM is to adapt the
experience in using PRiM to the domain of software architectures. The use of i* as a
modelling language has several advantages. On the one hand, i* allows to represent
functional and non-functional requirements as well as business goals at the same
level, thus bridging the gap that is usually found between requirements and
architectures [16]. On the other hand, i* has already been successfully used for the
representation of software architectures [18]. As a result, the customization strategy
followed in the SARiM case has prioritized operationalization over refinement and
combination (see Fig. 1).

Refinement. The generic intentions (or goals) defined in the abstract method chunks
of ReeF are refined for the particular domain of software architecture in order to
establish the main objectives to be satisfied in the new method, see Table 4. We
observe that only the desired artefacts are refined and that the precise technique may
still be undefined. As we do in PRiM, we do not consider the evaluation of the current
software architecture before the elicitation of the new requirements.

Operationalization. Once the intentions are defined, we search into the method base
those method chunks that better accomplish the intention. We propose to classify the
method chunks in the database according to three dimensions: intention they support,

496 G. Grau and X. Franch

domain they are designed for, and modelling language used. The reason for taking
considering the modelling language is that, if the method chunks do not share the
same modelling language, a transformation technique has to be applied between them,
so it is recommended to take this aspect into account in order to facilitate further
steps. However, other classification criteria for the method base can be used [3], [23].

Based on the refined intentions, the search for the appropriate method chunks in the
method base is facilitated, as the set of candidate elements is delimited. We remark
that the method base is not complete and not all the method chunks required may be
found there. If this is the case, a study of other suitable methods has to be done and
the resulting method chunks have to be added into the method base. This study may
include reengineering methods but also well-know requirements engineering methods
or guidelines for the application of patterns that, although not being defined as
reengineering methods, may support some of the proposed phases.

In the third column of Table 4 we show whether the method chunks available in the
method base are supported or not by PRiM. In the example presented in Table 3 we
show the intentions of the method chunks for the Scenario-based Software
Architecture Reengineering Method [3]. There, the fourth method chunk is scenario-
based and proposed a set of architecture transformation guidelines based on quality
attributes. As this intention satisfies the one we have refined in SARiM, we use it.

The other phases that are not supported by PRiM are the analysis of the current
software architecture and the elicitation of requirements for the future one. As there
are no method chunks in the method base to support those phases, we analyze other
methods for doing it. More precisely, we have searched in the field of requirements
engineering and we have selected the Architecture Reconstruction Method [17] for
the recovery and analysis of the current architecture, and the CBSP method [16] to be
adapted to the i* notation for the elicitation of the new requirements.

Combination. Once the method chunks are selected, method engineering techniques
for assembling can be applied [5], [23], [25], [27], [28] in order to obtain the final
method. The combination of the method chunks is out of the scope of this work, as it

Table 4. Refinement step, customazing ReeF in the domain of Software Architectures

Generic Intention in ReeF Refinement into SARiM Method chunks Operationalization
Analyse [source] <domain
artefact> using <analysis
techniques> obtaining
<analysed artefact>

Analyze source software
architecture using
<architecture analysis
technique>

Not supported by PRiM:
operationalized by the Architecture
Reconstruction Method.

Conceptualize <analysed
artefact> into <model artefact>

Conceptualize the software
architecture into an i* model

Supported by PRiM: needs previous
transformation of the results into DIS

Elicit <requirements artefact>
for the [final] <domain artefact>
using <elicitation techniques>

Elicit quality requirements for
the final software architecture
using <elicitation technique>

Not supported by PRiM:
operationalized by the CBSP
method.

Explore [candidate] <domain
artefact> using <generation
techniques>

Explore candidate software
architectures using
<generation techniques>

Not supported by PRiM: use of the
Scenario-based Software
Architecture Reengineering Method.

Assess [generated] <domain
artefact> using <evaluation
techniques>

Assess generated software
architecture using i* structural
evaluation techniques.

Supported by PRiM: needs the
generated architectures to be
represented as i* models.

Create [final]<specification
artefact> for the [new] <domain
artefact> using <model
transformation techniques>

Create final specification for
the new software architecture
using i* to use cases
transformation techniques.

Supported by PRiM: can be applied
directly from the previous phase.

 ReeF: Defining a Customizable Reengineering Framework 497

has already been addressed in [23], [27]. We just remark that, following the criteria in
[23] all the method chunks are combined following the established order and using the
assembly by association, where transformation techniques are applied in order to
transform i* models to scenarios. In the method chunks for requirements elicitation
and architectures generation, we apply an assembly by integration, as the tight link
between i* and requirements engineering techniques, facilitates it.

6 Conclusions and Future Work

In this paper we have argued that the evolution of Information Systems very often
leads to a reengineering activity. There are a lot of methods proposed in the literature
at different levels (business processes, software processes, software architectures,
etc.). This methods support reengineering both consciously, by applying the term
reengineering in its proposal; and unconsciously, by mentioning the phases that
characterize reengineering. However, as far as we know, there is not a common
framework to reason about reengineering and this has been the motivation of our
proposal. ReeF has been defined following the principles of Method Engineering
because this technique is specially well-suited when defining new methods based on
existing ones. As a result, the advantage of applying the framework is twofold:

 It provides a common umbrella under which the different existing reengineering
proposals may be analysed, compared for possible adoption, customized to
particular contexts and even composed to deal with reengineering at different
levels. In particular, an existing method could be enlarged to deal with some
activity not covered in its definition, or some technique may be changed with
some other identified as similar.

 It allows formulating new reengineering approaches starting from that framework,
not only facilitating that task, but also providing an ontology of reference and the
possibility of reusing methods, techniques, models and tools from a common
experience base.

ReeF is not intended to deliver an exhaustive catalogue with all the possible phases
and techniques, but instead it serves as a generic, customizable framework, which
provides, among other things, different levels of abstraction and the possibility of
choosing between different characteristics. More precisely, we argue that the
framework satisfies the following guiding principles proposed by the OPF [25]:

 Flexibility. In order to allow maximum flexibility when customizing, the phases
of ReeF provide: atomicity, in the way that the activities it proposes are related to
only one concept of the reengineering activities; optionality, certain phases can be
avoided if the customization requires so; and iteration, in those methods that
require several iterations of some of the phases.

 Standardization. Reef uses the most common terminology in the business
process reengineering field. For techniques, roles and activities it uses the already
standardized terminology and concepts coming from the OPF.

 Completeness. ReeF is complete in the sense that it includes all the elements that
may be needed in a reengineering process. Although it not provides a complete

498 G. Grau and X. Franch

repository of elements for instantiate the framework, it provides techniques for
constructing this repository.

 Openness. ReeF remains open in the sense that there is not a closed list of
elements and also because it is not necessary to instantiate all those elements,
allowing the method engineer to customize them accordingly to its goals.

 Reengineering Best Practices. ReeF is based on the abstraction and
generalization of well-know reengineering methods and related requirements
engineering techniques.

 Usability. ReeF facilitates usability by providing guidelines for its customization,
as it is shown in the customization of ReeF into SARiM.

 Reuse. The framework supports reuse of methods providing the context where to
customize the method and a set of elements as examples.

Further work will involve the application of ReeF on the combination of
reengineering methods that work in different domains (e.g., business process
reengineering and architecture reengineering). This includes the definition of more
method chunks and method artefacts into the method base and how to document and
classify them in order to facilitate their customization. We are mainly interested in the
use of i* and the method chunks proposed in PRiM as a basis for this process and we
want to adapt J-PRiM [15] in order to provide tool support for the whole process.

Acknowledgements

This work has been partially supported by the CICYT programme, project TIN2004-
07461-C02-01. Gemma Grau work is supported by an UPC research scholarship.

References

1. van der Aalst, W.M.P., van Hee, K.M.: Framework for Business Process Redesign. In:
Proceedings of the Fourth Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 36–45 (1995)

2. Antón, A.I., McCracken, W.M., Potts, C.: Goal Decomposition and Scenario Analysis in
Business Process Reengineering. In: Proceedings of CAiSE 1994. LNCS, vol. 811, pp. 94–
104. Springer, Heidelberg (1994)

3. Bengtsson, P., Bosch, J.: Scenario-based Software Architecture Reengineering. In:
Proceedings of the 5th International Conference on Software Reuse, pp. 308–317 (1998)

4. Bouillon, L., Vanderdonckt, J., Chow, K.C.: Flexible Re-engineering of Web Sites. In:
Proceedings of the 9th International Conference on Intelligent user interface (2004)

5. Brinkkemper, S., Saeki, M., Harmsen, F.: Assembly Techniques for Method Engineering.
In: Proceedings of CAiSE 1998. LNCS, vol. 1413, pp. 381–400. Springer, Heidelberg
(1998)

6. Brinkkemper, S., Saeki, M., Harmsen, F.: A Method Engineering Language for the
Description of Systems Development Methods. In: Proceedings of CAiSE 2001. LNCS,
vol. 2068, pp. 473–476. Springer, Heidelberg (2001)

7. de Bruin, H., van Vliet, H.: Scenario-based Generation and Evaluation of Sofware
Architectures. In: Proceedings of the Third International Conference on Generative and
Component-Based Software Engineering, LNCS, vol. 2186, pp. 128–139. Springer,
Heidelberg (2001)

 ReeF: Defining a Customizable Reengineering Framework 499

8. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed Requirements Acquisition.
Science of Computer Programming 20(1-2), 3–50 (1993)

9. Estrada, H., Martínez, A., Rebollar, O., Pastor, J.: An Empirical Evaluation of the i* in a
Model-Based Software Generation Environment. In: Proceedings of CAiSE 2006. LNCS,
vol. 4001, pp. 513–527. Springer, Heidelberg (2006)

10. Franch, X.: On the Quantitative Analysis of Agent-Oriented Models. In: Proceedings of
CAiSE 2006. LNCS, vol. 4001, pp. 495–509. Springer, Heidelberg (2006)

11. Franch, X., Grau, G., Quer, C.: A Framework for the Definition of Metrics for Actor-
Dependency Models. In: Proceedings of RE 2004, pp. 348–349

12. Grau, G.: State of the Art for the Systematic Construction and Analysis of i* Models for
assessing COTS-Based Systems Development. Research Report LSI-06-38-R. Available
at: http://www.lsi.upc.edu/ techreps/files/R06-38.zip

13. Grau, G., Franch, X., Maiden, N.A.M.: A Goal Based Round-Trip Method for System
Development. In: Proceedings of REFSQ 2005, pp. 71–86 (2005)

14. Grau, G., Cares, C., Franch, X., Navarrete, F.J.: A Comparative Analysis of i* Agent-
Oriented Modelling Techniques. In: Proceedings of SEKE 2006, pp. 657–663 (2006)

15. Grau, G., Franch, X., Ávila, S.: J-PRiM: A Java Tool for a Process Reengineering i*
Methodology. In: Proceedings of RE 2006, pp. 352–353 (2006)

16. Grünbacher, P., Egyed, A., Medvidovic, N.: Reconciling software requirements and
architectures with intermediate models. Software and Systems Modeling 3(3), 235–253
(2004)

17. Guo, G.Y., Atlee, J.M., Kazman, R.: A Software Architecture Reconstruction Method. In:
Proceedings of WICSA 1999, pp. 15–34 (1999)

18. The i* wiki at: http://istar.rwth-aachen.de/ Last Accessed : November 2006
19. Jones, S., Maiden, N.A.M.: RESCUE: An Integrated Method for Specifying Requirements

for Complex Socio-Technical Systems. Book chapter in Requirements Engineering for
Sociotechnical Systems, Idea Group Inc. (2004)

20. Katzenstein, G., Lerch, F.J.: Beneath the Surface of Organizational Processes: A Social
Representation Framework for Business Process Redesign. ACM Transactions on
Information Systems 18(4), 383–422 (October 2000)

21. Kim, M., Lee, J., Kang, K.C., Hong, Y., Bang, S.: Re-engineering Software Architecture
of Home Service Robots: A Case Study. In: Proceedings of ICSE 2005, pp. 505–513
(2005)

22. Kolp, M., Giorgini, P., Mylopoulos, J.: Organizational Patterns for Early Requirements
Analysis. In: Proceedings of CAiSE 2003. LNCS, vol. 2681, pp. 617–632. Springer,
Heidelberg (2003)

23. Mirbel, I., Ralyté, J.: Situational method engineering: combining assembly-based and
roadmap-driven approaches. Requirements Engineering, 11(1) (2005)

24. Nurcan, S., Rolland, C.: A multi-method for defining the organizational change.
Information and Software Technology 45(2), 61–82 (February 2003)

25. The OPEN Process Framework (OPF) at: www.opfro.org. Last accessed: November 2006.
26. Pressman, R.S.: Software Engineering: a Practitioner’s Approach. In: International

Edition, 6th edn. McGraw-Hill, New York (2005)
27. Ralyté, J.: Ingénierie des méthodes par assemblage de composants. Thèse de doctorat en

informatique de l’Université Paris 1 (Janvier 2001)
28. Ralyté, J., Rolland, C.: An Approach for Method Reengineering. In: ER 2001. LNCS,

vol. 2224, pp. 471–484. Springer, Heidelberg (2001)
29. Santander, V.F.A., Castro, J.F.B.: Deriving Use Cases from Organizational Modeling. In:

Proceedings of RE 2002, pp. 32–39 (2002)

500 G. Grau and X. Franch

30. Smith, J.D., Hybertson, D.: Implementing Large-Scale COTS Reengineering within the
United States Department of Defense. In:Proceedings of ICCBSS 2002. LNCS, vol. 2255,
pp. 243–256. Springer, Heidelberg (2002)

31. Yu, E.: Modelling Strategic Relationships for Process Reengineering, PhD. thesis,
University of Toronto (1995)

32. Zhang, W., Jarzabeg, S., Loughran, N., Rashid, A.: Reengineering a PC-based System into
the Mobile Device Product Line. In: Proceedings of the 6th International Workshop on
Principles of Software Evolution, pp. 149–160 (2003)

	Introduction
	Research Method
	PRiM: A Process Reengineering i* Method
	Defining ReeF, a Customizable Reengineering Framework
	The Abstraction Process
	The Generalization Process

	Customizing ReeF into SARiM
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

